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Note 

A Modified Muller Routine for Finding the Zeroes 
of a Non-analytic Complex Function 

A simple modification to the Muller zero-finding routine for complex functions is described 
which allows the finding of zeroes of complex non-analytic functions. This is particularly 
useful for the problem of finding all the images produced by a complicated gravitational lens 
configuration as described here, where it is important not to miss any of the zeroes. 

The problem of finding the zeroes of an analytic function of a complex variable by 
iterative methods has been well studied in numerical analysis, as can be seen in any 
standard treatment of the subject (see, e.g., Stoer and Bulirsch [ 11). In this paper we 
consider the problem of finding the zeroes for a function which is not analytic over 
the region of interest. 

This problem arises, for example, in the study of the gravitational lens phenomenon 
(see, e.g., Dyer and Roeder [2]), where one desires to know the location of all 
possible images produced by the lensing system of a distant source of radiation. If we 
consider a distant light source (say a quasar), at a distance s, from a lensing system 
(say a cluster of spherical galaxies), itself at a distance sO from the observer, then the 
images seen by the observer are located (in a complex plane attached to the sky) at 
the zeroes of the function H(z): 

“; H(z)=z-d-D \ %L:,(lZ -LA) 
,4, (z-L,)* ’ 

where N is the number of spherical lenses (say galaxies) in the lens system, d gives 
the location of the undeviated position of the source on the sky, and 
D = 4s,s,/(s, + s,). Each spherical lens is described by its total mass M,, its location 
on the sky L,, and a density profile function from which the function &(I), 
representing the fractional mass enclosed by a cylinder of radius r, can be derived. 
Each such mass distribution has a characteristic length scale a, in terms of which all 
other lengths are measured. For the case of the King mass distribution [3], this 
function has the form 

f(k) = 
+&T-c 

&Ti ln(c + JZG) -c 
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where a is called the “core radius” for the model, k = r/a, and c is the total radius of 
the spherical object in units of a. 

FAILURE OF MULLER'S METHOD 

The first attempt at finding all the zeroes of this equation used the usual Muller 
method (see [ 1, p. 2941) which fits a quadratic to the function at each iteration and 
then finds the nearest zero of this quadratic, iterating until sufficient accuracy is 
obtained. When finding multiple zeroes, previously found zeroes are divided out in 
the usual way. This method was found to be inadequate in that it failed to find all the 
zeroes that one knew existed in those cases, where symmetry allows prediction of the 
total number of images. As well, the particular images found depended upon the 
starting point for Muller’s routine. Another disadvantage was the large number of 
iterations that were required to find many of the zeroes found. 

If we take U and V to be the real and imaginary parts, respectively, of H(z), then it 
can be shown that lJ, + V, = 0 and U, - V, = 2(1 - xDu), where u(z) is the 
projected mass density on the sky due to all the lensing objects. Hence the 
Cauchy-Riemann conditions fail except where TCDU = 1. If the Cauchy-Riemann 
functions are U, + V, = P and U, - V, = Q then a rotation through an angle 
cos-'(P + Q)/d2(P' + S2) will make U, + V, = U,- V,,=R, where 

R = \/(P’ + Q’)/2 is the root-mean-square of P and Q. Hence the difference in 
magnitude of P and Q is unimportant since it can be transformed away. 

Noting that H(z) fails the Cauchy-Riemann conditions, it appeared useful to 
consider the implications of this for the usual Muller method. Since this method fits 
the function by a polynomial, it implicitly assumes that the function is itself complex 
analytic. That this is really the case can be seen by considering the zeroes of a cubic 
polynomial. Muller’s method very quickly finds correctly the zeroes of this function, 
but when used to find the zeroes of the conjugate function, which fails the 
Cauchy-Riemann conditions, Muller’s method fails. 

Having found that Muller’s method behaves quite differently when the 
Cauchy-Riemann conditions fail, we are led to consider the geometry of the two 
surfaces U(x, y) and V(x, y) over the x-y plane. To find a zero we must, at least 
implicitly, know the derivatives U,, U,, V,, and VY. At each iteration we could 
determine any two of these and then determine the other two from the 
Cauchy-Riemann equations, enabling us to find the next iteration point. Since 
Muller’s method fits the function in question by a quadratic function, which of course 
is analytic, these Cauchy-Riemann conditions are assumed, at least implicitly, to be 
true. To be specific, suppose that U, and U, are the two derivatives determined at a 
point for a function whose conjugate is analytic, so that assuming the validity of the 
Cauchy-Riemann conditions would yield values for V, and V, that are in error by a 
factor of -1. It is clear that such an error in detecting the correct geometry of the 
surfaces defined by U(x, y) and V(x, y) will lead to serious problems in finding the 
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zeroes of U and V, as evidenced by the example of the cubic function mentioned 
above. Clearly, in this simple case the correct choice of the representation of the 
function is of fundamental importance. In the case of a function like our H(z) the 
choice of the function or its conjugate is not so simple for it clearly depends on the 
functions P and Q. Hence, one would like to be able to determine at each iteration 
which form of the function is the better choice to use in the next Muller iteration. 

A MODIFIED MULLER'S METHOD 

It would appear that there are various methods of determining the choice of the 
function or its conjugate at each point, such as evaluating the Cauchy-Riemann 
functions for each case and choosing the representation with the minimum values for 
these functions. The method we have used appears to be the simplest in terms of 
programming and only involves one extra function evaluation per iteration. At each 
iteration two quadratics are lit, one to the function itself and one to the conjugate 
function. This clearly does not cost a new function evaluation, but only the overhead 
of the second fit, which is small. Each quadratic is solved for its nearest zero, in each 
case exactly as in the standard Muller routine. The function is then evaluated at each 
of these two conditional points. The accepted iteration step is the one of these two 
yielding the minimum value for the modulus of the function, presumably leading 
towards a zero. The function evaluation at the accepted iteration point is used in the 
next iteration while the function evaluation at the rejected point is now redundant. 
Hence, this requires only one extra function per iteration and requires only minor 
modification of the standard Muller routine. 

This routine has been coded and includes deflation by division for previously found 
zeroes. As a zero is approached more closely, deflation by very distant previously 
found zeroes is suppressed to maintain numerical accuracy, in the usual way. 

a b 
NORMAL FUNCTION CONJUGATE FUNCTION 

FIG. 1. Successive steps towards a zero of H(z) using Muller’s method on the function itself (a), and 
on the conjugate function (b). In (b) the scale has been changed by a factor of 3.6 to show a larger 
region. 
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TOGGLE FUNCTICN 

FIG. 2. Successive steps towards the same zero of H(z) using the modified Muller’s method, where 
toggling between function representations is enabled. 

The above routine has been used extensively for the multi-image gravitational lens 
problem described above with great success. In general it uses fewer function 
evaluations to find a given zero, and, much more importantly, it seems able to find all 
the zeroes in those cases, where we can, by symmetry, predict the total number of 
zeroes. Thus in this property it seems to continue the well-known property of the 
usual Muller method, which is exhaustive in finding zeroes of an analytic function. 

To illustrate graphically that the standard Muller routine can be enhanced effec- 
tively in this way, we have plotted successive iteration steps towards a typical zero 
using both methods. Fig. la shows the usual Muller routine applied to the function 
itself while Fig. lb is the result of using the conjugate function. Fig. 2 is the result of 
using the modified Muller routine, allowing the routine to toggle between the function 
and its conjugate as it senses the better representation. It is clear in this example that 
though the zero is eventually reached in Fig. la, the successive iteration steps are 
often close to being perpendicular to the correct direction, while in Fig. lb (where the 
scale has changed by a factor of 3.6), the usual Muller routine leads to successive 
iterations which lose the zero altogether. In contrast, Fig. 2 illustrates the value of 
letting the routine toggle between representations as necessary, where most steps are 
taken in roughly the correct direction. It can be seen that the routine does, in fact, 
change its choice of representation of the function quite frequently, with the function 
itself the dominant, though not exclusive, choice in the early iterations and changing 
to the conjugate representation near the zero itself; and hence seems to avoid the 
large number of steps almost perpendicular to the correct direction. 

CONCLUSION 

We have described a simple modification to Muller’s zero-finding routine which 
allows one to find all the zeroes of a class of non-analytic complex functions with 
reasonable efficiency. It has been applied to the gravitational lens problem where the 
number of zeroes is large (e.g., seventeen, even for only four lenses) and seems to 
work very well where the conventional Muller routine failed to find all the zeroes. 
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